We quantified the effect of acute ethanol exposure (initial blood concentrations 0.7 g/L) on major drug metabolizing enzymes and p-glycoprotein. Sixteen healthy Caucasians participated in a randomized crossover study with repeated administration of either vodka or water. Enzyme/transporter activity was assessed by a cocktail of probe substrates, including caffeine (CYP1A2/NAT2), tolbutamide (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), midazolam (CYP3A), and digoxin (P-glycoprotein). The ratio of AUC0-t of dextromethorphan for ethanol/water coadministration was 1.95 (90% confidence interval (CI) 1.48-2.58). The effect was strongest in individuals with a CYP2D6 genotype predicting high activity (n = 7, ratio 2.66, 90% CI 1.65-4.27). Ethanol increased caffeine AUC0-t 1.38-fold (90% CI 1.25-1.52) and reduced intestinal midazolam extraction 0.77-fold (90% CI 0.69-0.86). The other probe drugs were not affected by ethanol. The results suggest that acute ethanol intake typically has no clinically important effect on the enzymes/transporters tested.
Read full publication:
Gazzaz M, Kinzig M, Schaeffeler E, Jübner M, Hsin CH, Li X, Taubert M, Trueck C, Iltgen-Breburda J, Kraus D, Queckenberg C, Stoffel M, Schwab M, Sörgel F, Fuhr U. Drinking Ethanol Has Few Acute Effects on CYP2C9, CYP2C19, NAT2, and P-Glycoprotein Activities but Somewhat Inhibits CYP1A2, CYP2D6, and Intestinal CYP3A: So What? Clin Pharmacol Ther. 2018 Dec;104(6):1249-1259. doi: 10.1002/cpt.1083.